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We investigate the dynamics of a two-dimensional axial next-nearest-neighbor Ising model following a
quench to zero temperature. The Hamiltonian is given by H=−J0�i,j=1

L Si,jSi+1,j −J1�i,j=1�Si,jSi,j+1−�Si,jSi,j+2�.
For ��1, the system does not reach the equilibrium ground state but slowly evolves to a metastable state. For
��1, the system shows a behavior similar to that of the two-dimensional ferromagnetic Ising model in the
sense that it freezes to a striped state with a finite probability. The persistence probability shows algebraic
decay here with an exponent �=0.235�0.001 while the dynamical exponent of growth z=2.08�0.01. For
�=1, the system belongs to a completely different dynamical class; it always evolves to the true ground state
with the persistence and dynamical exponent having unique values. Much of the dynamical phenomena can be
understood by studying the dynamics and distribution of the number of domain walls. We also compare the
dynamical behavior to that of a Ising model in which both the nearest and next-nearest-neighbor interactions
are ferromagnetic.
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I. INTRODUCTION

The dynamics of Ising models is a much studied phenom-
enon and has emerged as a rich field of present-day research.
Models having identical static critical behavior may display
different behavior when dynamic critical phenomena are
considered �1�. An important dynamical feature commonly
studied is the quenching phenomenon below the critical tem-
perature. In a quenching process, the system has a disordered
initial configuration corresponding to a high temperature and
its temperature is suddenly dropped. This results in quite a
few interesting phenomena like domain growth �2,3�, persis-
tence �4–8�, etc.

In one dimension, a zero-temperature quench of the Ising
model ultimately leads to the equilibrium configuration, i.e.,
all spins point up �or down�. The average domain size D
increases in time t as D�t�� t1/z, where z is the dynamical
exponent associated with the growth. As the system coars-
ens, the magnetization also grows in time as m�t�� t1/2z. In
two or higher dimensions, however, the system does not al-
ways reach equilibrium �8� although these scaling relations
still hold good.

Apart from the domain growth phenomenon, another im-
portant dynamical behavior commonly studied is persistence.
In the Ising model, in a zero-temperature quench, persistence
is simply the probability that a spin has not flipped until time
t and is given by P�t�� t−�. � is called the persistence expo-
nent and is unrelated to any other known static or dynamic
exponent.

Drastic changes in the dynamical behavior of the Ising
model in the presence of a competing next-nearest-neighbor
interaction have been observed earlier �9–11�. The one-
dimensional axial next-nearest-neighbor Ising �ANNNI�
model with L spins is described by the Hamiltonian

H = − J�
i=1

L

�SiSi+1 − �SiSi+2� . �1�

Here it was found that for ��1, under a zero-temperature
quench with single-spin-flip Glauber dynamics, the system

does not reach its true ground state. �The ground state is
ferromagnetic for ��0.5, antiphase for ��0.5, and highly
degenerate at �=0.5 �12�.� On the contrary, after an initial
short time, domain walls become fixed in number but remain
mobile at all times, thereby making the persistence probabil-
ity go to zero in a stretched exponential manner. For ��1 on
the other hand, although the system reaches the ground state
at long times, the dynamical exponent and the persistence
exponent are both different from those of the Ising model
with only nearest-neighbor interactions �10�.

The above observations, and the additional fact that even
in the two-dimensional nearest-neighbor Ising model
frozen-in striped states appear in a zero-temperature quench
�8�, suggest that the two-dimensional Ising model in the
presence of competing interactions could show novel dy-
namical behavior. In the present work, we have introduced
such an interaction �along one direction� in the two-
dimensional Ising model, thus making it equivalent to the
ANNNI model in two dimensions precisely. The Hamil-
tonian for the two-dimensional ANNNI model on an L�L
lattice is given by

H = − J0 �
i,j=1

L

Si,jSi+1,j − J1 �
i,j=1

L

�Si,jSi,j+1 − �Si,jSi,j+2� . �2�

Henceforth, we will assume the competing interaction to be
along the x �horizontal� direction, while in the y �vertical�
direction, there is only ferromagnetic interaction.

Although the thermal phase diagram of the two-
dimensional ANNNI model is not known exactly, the ground
state is known and simple. If one calculates the magnetiza-
tion along the horizontal direction only, then for ��0.5 there
is ferromagnetic order and antiphase order for ��0.5.
Again, �=0.5 is the fully frustrated point where the ground
state is highly degenerate. On the other hand, there is always
ferromagnetic order along the vertical direction. In Fig. 1, we
show the ground state spin configurations along the x direc-
tion for different values of �.
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In Sec. II, we have given a list of the quantities calculated.
In Sec. III, we discuss the dynamic behavior in detail. In
order to compare the results with those of a model without
competition, we have also studied the dynamical features of
a two-dimensional Ising model with ferromagnetic next-
nearest-neighbor interaction, i.e., the model given by Eq. �2�
in which ��0. These results are also presented in Sec. III.
Discussions and concluding statements are made in the last
section.

II. QUANTITIES CALCULATED

We have estimated the following quantities in the present
work.

�1� The persistence probability P�t�: As already men-
tioned, this is the probability that a spin does not flip until
time t. In case the persistence probability shows a power law
form, P�t�� t−�, one can use the finite-size-scaling relation
�13�

P�t,L� � t−�f�L/t1/z� . �3�

For finite systems, the persistence probability saturates at a
value L−� at large times. Therefore, for x	1, f�x��x−� with
�=z�. For large x, f�x� is a constant.

It has been shown that the exponent � is related to the
fractal dimension of the fractal formed by the persistent spins
�13�. Here we obtain an estimate of � using the above analy-
sis.

�2� Number of domain walls ND: Taking a single strip of L
spins at a time, one can calculate the number of domain
walls for each strip and determine the average. In the L�L
lattice, we consider the fraction fD=ND /L and study the be-
havior of fD as a function of time. One can take strips along
both the x and y directions �see Fig. 2 where the calculation
of fD in simple cases has been illustrated�. As the system is
anisotropic, it is expected that the two measures fDx

along the
x direction and fDy

along the y direction will show different
dynamical behavior in general. The domain size D increases
as t1/z as already mentioned and it has been observed earlier
that the dynamic exponent occurring in coarsening dynamics
is the same as that occurring in the finite-size scaling of P�t�
�Eq. �3�� �13�. Although we do not calculate the domain
sizes, the average number of domain walls per strip is shown
to follow a dynamics given by the same exponent z, at least
for ��1.

�3� Distribution P�fD� �or P�ND�� of the fraction �or num-
ber� of domain walls at steady state; this is also done for both
x and y directions.

�4� Distribution P�m� of the total magnetization at steady
state for �
0 only.

We have taken lattices of size L�L with L=40, 100, 200,
and 300 to study the persistence behavior and dynamics of
the domain walls of the system and have averaged over at
least 50 configurations for each size. For estimating the dis-
tribution ND we have averaged over a much larger number of
configurations �typically 4000� and restricted to system sizes
40�40, 60�60, 80�80, and 100�100. Periodic boundary
conditions have been used in both x and y directions. J0
=J1=1 has been used in the numerical simulations.

III. DETAILED DYNAMICAL BEHAVIOR

Before going into the details of the dynamical behavior,
let us discuss the stability of simple configurations or struc-
tures of spins which will help us in appreciating the fact that
the dynamical behavior is strongly dependent on �.

A. Stability of simple structures

An important question that arises in dynamics is the sta-
bility of spin configurations—it may happen that configura-
tions which do not correspond to the global minimum of
energy still remain stable dynamically. This has been termed
“dynamic frustration” �14� earlier. A known example is of
course the striped state occurring in the two- or higher-
dimensional Ising models, which is stable but not a configu-
ration that has minimum energy.

In the ANNNI model, the stability of the configurations
depend very much on the value of �. A previous analysis for
the one-dimensional ANNNI model has shown that �=1 is a
special point, above and below which the dynamical behav-
ior changes completely because of the stability of certain
structures in the system.

Let us consider the simple configuration of a single up
spin in a sea of down spins. Obviously, it will be unstable as
long as ��2. For ��2, although this spin is stable, all the
neighboring spins are unstable. However, for ��2, only the
up spin is unstable and the dynamics will stop once it flips.

T = 0
0 .5

++++++

0 κ

Antiphase
++ −−++ −−

Ferro

Highly degenerate

FIG. 1. Ground state �temperature T=0� spin configurations
along the x direction for different values of �. In the ferromagnetic
phase, there is a twofold degeneracy and in the antiphase the de-
generacy is fourfold. The ground state is infinitely degenerate at the
fully frustrated point �=0.5.

I II I

(a)

I

II

I

II
I

(b)

FIG. 2. Schematic pictures of configurations with flat interfaces
separating domains of type I and II: �a� when the interface lies
parallel to the y axis, we have nonzero fDx

�=2 /L in this particular
case� and �b� with interfaces parallel to the x axis we have nonzero
fDy

�=4 /L here�.
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When �=2 the spin may or may not flip, i.e., the dynamics is
stochastic.

Next we consider a domain of two up spins in a sea of
down spins. These two may be oriented along either the hori-
zontal or vertical direction. These spins will be stable for �
�1 only while all the neighboring spins are unstable. For
��1, all spins except the up spins are stable. When �=1, the
dynamics is again stochastic.

A two by two structure of up spins in a sea of down spins
on the other hand will be stable for any value of ��0. But
the neighboring spins along the vertical direction will be
unstable for ��1. This shows that for ��1, one can expect
that the dynamics will affect the minimum number of spins
and therefore the dynamics will be slowest here. A picture of
the structures described above are shown in Fig. 3.

One can take more complicated structures but the analysis
of these simple ones is sufficient to expect that there will be
different dynamical behavior in the regions ��1, �=1, �
�1, �=2, and ��2. However, we find that as far as persis-
tence behavior is concerned, there are only three regions with
different behavior: ��1, �=1, and ��1. On the other hand,

when the distribution of the number of domain walls in the
steady state is considered, the three regions 1���2, �=2,
and ��2 have clearly distinct behavior.

B. 0���1

We find that, as in �10�, in the region 0���1, the system
has identical dynamical behavior for all �. Also, as in the
one-dimensional case, here the system does not go to its
equilibrium ground state. However, the dynamics continues
for a long time, albeit very slowly for the reasons mentioned
above. In Figs. 4–7, we show snapshots of the system at
different times for a typical quench to zero temperature. As
already mentioned, here domains of sizes 1 and 2 will vanish
very fast, and certain structures, the smallest of which is a
2�2 domain of up or down spins in a sea of oppositely
oriented spins can survive, until very long times. These
structures we call quasifrozen, as the spins inside these struc-
tures �together with the neighborhood spins� are locally
stable; they can be disturbed only when the effect of a spin
flip occurring at a distance propagates to its vicinity, which
usually takes a long time.

The pictures at the later stages also show that the system
tends to attain a configuration in which the domains have
straight vertical edges; it can be easily checked that struc-
tures with kinks are not stable. We find a tendency to form
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FIG. 4. Snapshot of a 40�40 system at time t=10 for ��1. A
few simplest quasifrozen structures are highlighted.
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FIG. 3. Analysis of stability of simple structures. �a� Single up
spin in sea of down spins; here for ��2 all the spins except the up
spin is stable. �b� Two up spins in a sea of down spins; all spins
except the two up spins are stable for ��1. �c� A 2�2 structure of
up spins; here all the spins are stable for ��1 while neighboring
spins are not �see text for details�.
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FIG. 5. Same as Fig. 4 with t=100.
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FIG. 6. Same as Fig. 4 with t=500. One of the 2�2 structures
has melted while another one has formed. The ladderlike structures
which have formed are perfectly stable.
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strips of width 2 �“ladders”� along the vertical direction—
this is due to the second-neighbor interaction; however, these
strips do not span the entire lattice in general. The domain
structure is obviously not symmetric, e.g., ladders along the
horizontal direction will not form stable structures. The dy-
namics stops once the entire lattice is spanned by only lad-
ders of height N
L.

The persistence probability for ��1 shows a very slow
decay with time which can be approximated by 1 / log�t� for
an appreciable range of time. At later times, it approaches a
saturation value in an even slower manner. The slow dynam-
ics of the system accounts for this slow decay.

The fractions of domain walls, fDx
and fDy

, along the x
and y directions show remarkable difference as functions of
time. While that in the x direction saturates quite fast, in the
y direction, it shows a gradual decay until very long times
�see Fig. 8�. This indicates that the dynamics essentially
keeps the number of domains unchanged along the x direc-
tion while that in the other direction changes slowly in time.
The behavior of fDx

is similar to what happens in one dimen-
sion. In fact, the average number of domain walls NDx

at
large times is also very close to that obtained for the ANNNI
chain; it is about 0.27L. However, in contrast to the one-
dimensional case where the domain walls remain mobile,
here the mobility of the domain walls is impeded by the

presence of the ferromagnetic interaction along the vertical
direction causing a kind of pinning of the domain walls.

The distribution of the fraction of domain walls in the
steady state shown in Fig. 9 also reveals some important
features. The distributions for fDx

and fDy
are both quite nar-

row with the most probable values being fDx
�0.27 and fDy

�0.04 �these values are very close to the average values�.
With increase in system size, the distributions tend to be-
come narrower, indicating that they approach a
�-function-like behavior in the thermodynamic limit.

C. ��1

It was already observed that �=1 is the value at which the
dynamical behavior of the ANNNI model changes drastically
in one dimension. In two dimensions, this is also true; how-
ever, we find that the additional ferromagnetic interaction
along the vertical direction is able to affect the dynamics to a
large extent. Again, as in the one-dimensional case, we have
different dynamical behavior for �=1 and ��1. In this sec-
tion we discuss the behavior for ��1 while the �=1 case is
discussed in the next section.

The persistence probability follows a power law decay
with �=0.235�0.001 for all ��1, while the finite-size-
scaling analysis made according to �3� suggests a z value
2.08�0.01. This is checked for different values of � ��
=1.3,1.5,2.0,20,100� and the values of � and z have negli-
gible variations with � which do not show any systematics.
Hence we conclude that the exponents are independent of �
for ��1. A typical behavior of the raw data as well as the
data collapse is shown in Fig. 10.

The dynamics of the average fraction of domain walls
along the horizontal direction, fDx

, again shows a fast satu-
ration while that in the y direction has a power law decay
with an exponent �0.48 �Fig. 11�. This exponent is also
independent of �. As mentioned in Sec. II, we find that there
is a good agreement of the value of this exponent with that of
1 /z obtained from the finite-size-scaling behavior of P�t�,
implying that the average domain size D is inversely propor-
tional to fDy

. This is quite remarkable, as the fraction of
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FIG. 7. Same as Fig. 4 with t=75 000. This snapshot is taken
after a very long time to show that the system has undergone nomi-
nal changes compared to the length of the time interval. The whole
configuration now consists of ladders and the dynamics stops once
the system reaches such a state.
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FIG. 8. Persistence P�t� and average number of domain walls
per site, fD, are shown for ��1.
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FIG. 9. Steady state distributions of fraction of domain walls at
��1 for different system sizes. The distributions become narrower
as the system size is increased.
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domain walls calculated in this manner is not exactly equiva-
lent to the inverse of domain sizes in a two-dimensional
lattice; the fact that fDx

remains constant may be the reason
behind the good agreement �essentially the two-dimensional
behavior is getting captured along the dimension where the
number of domain walls shows significant change in time�.

Although the persistence and dynamic exponents are �
independent, we find that the distribution of the number of
domain walls has some nontrivial � dependence.

Although the system, for all ��1, evolves to a state with
antiphase order along the horizontal direction, the ferromag-
netic order along vertical chains is in some cases separated
by one or more domain walls. A typical snapshot is shown in
Fig. 12 displaying that one essentially gets a striped state
here as in the two-dimensional Ising model.

Interfaces that occur parallel to the y axis, separating two
regions of antiphase and keeping the ferromagnetic ordering
along the vertical direction intact, are extremely rare, the
probability vanishing for larger sizes. Quantitatively, this
means we should get fDx

=0.5 at long times, which is con-
firmed by the data �Fig. 11�. Hence in the following our
discussions on the striped state will always imply flat hori-
zontal interfaces, i.e., antiphase ordering along each horizon-
tal row, but the ordering can be of different types �e.g., a �
�   � �   ¯ type and a   � �   � � ¯

type, which one can call a “shifted” antiphase ordering with
respect to the first type�.

It is of interest to investigate whether these striped states
survive in infinite systems. To study this, we consider the
distribution of the number of domain walls rather than the
fraction for different system sizes. The probability that there
are no domain walls, or a perfect ferromagnetic phase along
the vertical direction, turns out to be weakly dependent on
the system sizes but having different values for different
ranges of values of �. For 1���2, it is �0.632, and for
�=2.0, it is �0.544, while for any higher value of �, this
probability is about 0.445. Thus it increases for � although
not in a continuous manner and, as in the two-dimensional
case, we find that there is indeed a finite probability to get a
striped state.

While we look at the full distribution of the number of
domain walls at steady state �Fig. 13�, we find that there are
dominant peaks at NDy

=0 �corresponding to the unstriped
state� and at NDy

=2 �which means there are two interfaces�.
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FIG. 10. Collapse of scaled persistence data versus scaled time
using �=0.235 and z=2.08 for different system sizes for ��1.
Inset shows the unscaled data.
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FIG. 11. Decay of the fraction of domain walls with time at �
�1 along horizontal and vertical directions. The dashed line has
slope equal to 0.48.
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FIG. 12. Typical snapshot of a steady state configuration for �
�1 with flat horizontal interfaces separating two regions of an-
tiphase ordering �see text�.
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However, we find that the distribution shows that there could
be odd values of NDy

as well. This is because the antiphase
has a fourfold degeneracy and a “shifted” ordering can occur
in several ways such that odd values of NDy

are possible. In
any case, the number of interfaces never exceeds NDy

=6 for
the system sizes considered.

D. �=1

Here we find that the persistence probability follows a
power law decay with �=0.263�0.001. The finite-size-
scaling analysis suggests a z value 1.84�0.01 �Fig. 14�.

We have again studied the dynamics of fDx
and fDy

; the
former shows a fast saturation at 0.5 while the latter shows a
rapid decay to zero after an initial power law behavior with
an exponent �0.515 �Fig. 15�. This value, unlike in the case
��1, does not show very good agreement with 1 /z obtained
from the finite-size-scaling analysis. We will get back to this
point in the next section.

The results for fDx
and fDy

imply that the system reaches a
perfect antiphase configuration as there are no interfaces left
in the system with fDx

=0.5 and fDy
=0 at later times.

E. �Ï0.0

In order to make a comparison with the purely ferromag-
netic case, we have also studied the Hamiltonian �2� with

negative values of � which essentially corresponds to the
two-dimensional Ising model with anisotropic next-nearest-
neighbor ferromagnetic interaction.

�=0 corresponds to the pure two-dimensional Ising
model for which the numerically calculated value of �
�0.22 is verified. We find a result when � is allowed to
assume negative values: the persistence exponent � has a
value �0.20 for 	� 	 �1 while for 0� 	�	
1, the value of �
has an apparent dependence on �, varying between 0.22 to
0.20. However, it is difficult to numerically confirm the na-
ture of the dependence in such a range and we have refrained
from doing it. At least for 	�	�1, the persistence exponent is
definitely different from that of at �=0. The growth exponent
z, however, appears to be constant and �2.0 for all values of
�
0. A data collapse for large negative � is shown in Fig.
16 using �=0.20 and z=2.0.

The effect of the anisotropy shows up clearly in the be-
havior of fDx

and fDy
as functions of time �Fig. 17�. For �

=0, they have identical behavior, both reaching a finite satu-
ration value showing that there may be interfaces generated
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FIG. 14. Collapse of scaled persistence data versus scaled time
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in either of the directions �corresponding to the striped states
which are known to occur here�. As the absolute value of � is
increased, fDx

shows a fast decay to zero while fDy
attains a

constant value. The saturation value attained by fDy
increases

markedly with 	�	 while for fDx
the decay to zero becomes

faster. One can conduct a stability analysis for striped states
to show that such states become unstable when the interfaces
are vertical and � increases beyond 1, leading to the result
fDx

→0. Extracting the z value from the variations of fDx
or

fDy
is not very simple here as the quantities do not show

smooth power law behavior over a sufficient interval of time.
The fact that fDy

and/or fDx
reach a finite saturation value

indicates that striped states occur here as well. The behavior
of fDx

and fDy
suggests that, in contrast to the isotropic case

where interfaces can appear either horizontally or vertically,
here the interfaces appear dominantly along the x direction as
� is increased. Thus the normalized distribution of the num-
ber of domain walls along y is shown in Fig. 18. We find that
as � is increased in magnitude, more and more interfaces
appear. However, the number of interfaces is always consis-
tent with the fact that interfaces occur between ferromagnetic
domains of all up and all down spins.

Last, in this section, we discuss the behavior of the mag-
netization, which is the order parameter in a ferromagnetic
system. As striped states are formed, the magnetization will
assume values less than unity. The probability of configura-
tions with magnetization equal to unity shows a stepped be-
havior, with values changing at 	�	=1 and 2 and assuming
constant values at 1� 	�	�2 and above 	�	=2 �Fig. 19�.

IV. DISCUSSION AND CONCLUSIONS

We have investigated some dynamical features of the
ANNNI model in two dimensions following a quench to zero
temperature. We have obtained the result that the dynamics is
very much dependent on the value of �, the ratio of the
antiferromagnetic interaction to the ferromagnetic interaction
along one direction. This is similar to the dynamics of the
one-dimensional model studied earlier, but here we have
more intricate features, e.g., that of the occurrence of

quasifrozen-in structures for ��1, where the persistence
probability shows a very slow decay with time. The persis-
tence probability is algebraic for ��1, but exactly at �=1
the exponents � and z are different from those at ��1. The
exponents for ��1 are in fact very close to those of the
two-dimensional Ising model with nearest-neighbor ferro-
magnetic interaction. �This was not at all true for the one-
dimensional ANNNI chain, where the persistence exponent
at ��1 was found to be appreciably different from that of
the one-dimensional Ising chain with nearest-neighbor ferro-
magnetic interaction.� This shows that the ferromagnetic in-
teraction along the vertical direction is able to negate the
effect of the antiferromagnetic interaction to a great extent.
This is apparently a counterintuitive phenomenon, �=0 and
��1 having very similar dynamic behavior while at the in-
termediate values the dynamics is qualitatively and quantita-
tively different. As far as dynamics is concerned, the ANNNI
model in two dimensions cannot therefore be treated pertur-
batively.

Although the values of � and z are individually quite close
for �=0 and ��1, the products z�=� are quite different.
For �=0, ��0.44 while for ��1, it is 0.486�0.002. This
shows that the spatial correlations of the persistent spins are
quite different for the two and one can safely say that the
dynamical classes for �=0 and ��1 are not the same. �
=1 is the special point where the dynamic behavior changes
radically. Here there appears to be some ambiguity regarding
the value of z; estimating � from the finite-size-scaling
analysis gives ��0.484�0.005, while on using the z value
from the domain dynamics, the estimate is approximately
equal to 0.51. However, the dynamics of the domain sizes
may not be very accurately reflected by the dynamics of fDy
in which case ��0.48 is a more reliable result. Thus we find
that, although the values of � and z are quite different for
�=1 and ��1, the � values are close.

We would like to add here that when there is a power law
decay of a quantity related to the domain dynamics, it is
highly unlikely that it will be accompanied by an exponent
which is different from the growth exponent. Thus, even
though we get slightly different values of z for �=1 from the
two analyses, it is more likely that this is an artifact of the
numerical simulations.

Another feature present in the two-dimensional Ising
model is the finite probability with which it ends up in a
striped state. The same happens for ��1, but here the prob-
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abilities are quite different and also dependent on �. We find
that there is a significant role of the point �=2 here as this
probability has different values at �=2, ��2, and ��2.

Comparison of the ANNNI dynamics with that of the fer-
romagnetic anisotropic Ising model shows some interesting
features. In the latter, one gets a different value of persistence
exponent for ��−1 while in the former a different value is
obtained for ��1. The values �except for �=1� are in fact
very close to those of the two-dimensional Ising model, but
simulations done for identical system sizes averaged over the
same number of initial configurations are able to confirm the
difference. The qualitative behavior of the domain dynamics
is again strongly � dependent when � is negative. Another
point to note is that the probability that the system evolves to
a pure state is � dependent in both the ANNNI model and the
Ising model. In both cases, in fact, this probability decreases
in a steplike manner with increasing magnitude of �. We also
find the interesting result that, while the distributions of the
number of domain walls can have nonzero values at odd
values of ND in the ANNNI model because of the fourfold
degeneracy of the antiphase, for the Ising model, odd values
of ND are not permissible as the ferromagnetic phase is two-
fold degenerate.

Finally, we comment on the fact that, although the dy-
namical behavior, as far as domains are concerned, reflects
the inherent anisotropy of the system �in both the ferromag-
netic and antiferromagnetic models�, the persistence prob-
ability is unaffected by it. In order to verify this, we esti-
mated P�t� along an isolated chain of spins along the x and y
directions separately and found that the two estimates gave
identical results for all values of �.

In conclusion, it is found that, except for the region 0
� 	�	�1, the dynamical behavior of the Hamiltonian �2� is
remarkably similar for negative and positive �; the persis-
tence and growth exponents are only marginally affected
compared to the values of the two-dimensional Ising case
��=0� and the domain distributions have similar nature.
However, the region 0���1 is extraordinary, where alge-
braic decay of persistence is absent. There is dynamic frus-

tration as the system gets locked in a metastable state con-
sisting of ladderlike domains and the dynamics is very slow
because of the presence of quasifrozen structures. There is in
fact dynamic frustration at other � values also in the sense
that, except for �=1, the system has a tendency to get locked
in a striped state. However, even in that case, the algebraic
decay of the persistence probability is observed. Thus alge-
braic decay of persistence probability seems to be valid only
when the metastable state is a striped state. Although there is
no dynamic frustration at �=1 in the sense that it always
evolves to a state with perfect antiphase structure, it happens
to be a very special point where the persistence exponent and
growth exponents are unique and appreciably different from
those of the �=0 case.

In this paper, the behavior of the two-dimensional ANNNI
model under a zero temperature has been discussed; the dy-
namics at finite temperature can be in fact quite different. At
finite temperatures, the spin flipping probabilities are sto-
chastic, and the dynamical frustration may be overcome by
the thermal fluctuations. It has been observed earlier �14�
that, in a thermal annealing scheme of the one-dimensional
ANNNI model, the �=0.5 point becomes significant. A simi-
lar effect can occur for the two-dimensional case as well. The
definition of persistence being quite different at finite tem-
peratures �15�, it is also not easy to guess its behavior �for
either the one- or two-dimensional model� simply from the
results of the zero-temperature quench. Indeed, the behavior
of the ANNNI model under a finite-temperature quench is an
open problem which could be addressed in the future.
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